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Lecture 1 : The Origin of Minmax,

Birkhoff Curve Shortening Process

and its Generalization to Surfaces
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i) Ψ is continuous (Λ is equipped with the W 1,2 topology.)

ii) ∀ ~σ ∈ Λ, Ψ(~σ) is homotopic to ~σ ,

iii) ∀ ~σ ∈ Λ,
L(Ψ(~σ)) ≤ L(~σ) ,

iv) ∃ ϕ ∈ C 0([0,∞), [0,∞)) s.t. ϕ(0) = 0 and

dist2 (~σ,Ψ(~σ)) ≤ ϕ

(

L2(~σ)− L2(Ψ(~σ))

L2(Ψ(~σ))

)

v) ∀ ε > 0 ∃α > 0 s.t.

dist(~σ,G ) ≥ ε =⇒ L(Ψ(~σ)) ≤ L(~σ)− α .

where the distance is derived from the W 1,2 norm. �
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Existence of Closed Geodesics Realizing W~σ0
> 0.

Theorem Let ~σ0 be a sweepout of N2 such that W~σ0
> 0 then the

number W~σ0
is the length of a closed geodesics in N2 homotopic

to ~σ0. �

Proof : We “pull tight” a minimizing sequence ~σk into
~γk = Ψ(~σk). Hence

∀ ε > 0 ∃ η > 0 s.t. for k large enough

(2π)−1 L2(~γk(t, ·)) = E (~γk(t, ·)) ≥ W~σ0
−η =⇒ dist(~γk(t, ·),G ) ≤ ε

�
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A Strict Convexity Behind the Construction of Ψ.

Lemma Let I be an interval in S1 such that |I | ≤ δ/2π and let ~σ1
be a Lipschitz map on I such that |∂θ~σ1| ≤ 1 and ~σ2 be the
minimizing geodesic with the same end points,then we have

dist2(~σ1, ~σ2) ≤ C [E (~σ1)− E (~σ2)]

where C > 0 only depends on Nn. �
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Sacks-Uhlenbeck 1980 : Let Γ ∈ π2(N
n)

Step 1 : Minimize

Eσ(u) :=

∫

S2

(1 + |du|2S2)
(1+σ) dvolS2 s.t. [u] = Γ 6= 0

The problem is sub-critical.

Step 2 : uσ be a minimizer. Make σ → 0.

Lemma. Uniform ǫ−regularity ∃ ǫN > 0 s.t. ∀ 0 ≤ σ ≤ 1

∫

Br (x)
(1 + |duσ|

2
S2)

(1+σ) dvolS2 < ǫN =⇒ |duσ|(x) ≤ r−1
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Colding-Minicozzi Min-Max Construction of Minimal

Spheres

Sweepouts of N3 : u ∈ C 0([0, 1],W 1,2(S2,N3)) s.t.

u([0, 1] × S2) generates H3(N
3,Z)

the following energy level

0 < W := inf
u(s,·) sweepout

max
s∈[0,1]

∫

S2

|du|2S2 dvolS2

is achieved by a bubble tree of conformal harmonic maps.

The proof is very involved. Based on harmonic replacement
method coming from the local convexity of the harmonic map
Lagrangian.
It replaces Birkhoff curve shortening procedure.
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GMT has been introduced to solve the Plateau Problem in full
generality. Main object : Rectifiable current (i.e. Vectorial
distribution carried by a “measure theoretic version of
sub-manifold”.) Federer, Fleming, De Giorgi, Reifenberg...etc ≃
50’s

In a second period GMT has been adapted to non-minimizing
procedures. Rectifiable currents are not operative anymore. Main
Object : Varifolds (i.e. Radon Measures on the space of planes)
Allard, Almgren, Pitts....etc ≃ 70-80’s

This has brought important results in codimension 1.
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Existence Result for Non-Minimizing Minimal Surfaces via

GMT.

Theorem [Almgren, Pitts, Simon, Smith, 1982] Let 3 ≤ m ≤ 7 and
(Mm, g) be a closed Riemannian manifold then there exists a
smooth embedded minimal surface of codimension 1 in Mm. �

Conjecture [S.T. Yau, 1980] Any compact 3 dimensional
Riemannian manifold contains infinitely many smooth minimal
immersions of closed surfaces. �

Theorem [Marques, Neves, 2016] Let 3 ≤ m ≤ 7 and (Mm, g) be a
closed Riemannian manifold of positive Ricci curvature then there
exists infinitely many embedded minimal surface of codimension 1
in Mm. �


